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The Debye model of interaction of a polar molecule with an electric field and the medium surrounding the
molecule is applied for numerical determination of the specific heat release in gaseous ammonia, steam, and
in water attributed to dissipation of the energy of a variable electric field in a viscous polar medium.

Under the action of a variable electric field a gas or a liquid molecule possessing an electric dipole moment
performs vibrational–rotational motion in a viscous medium around the axis perpendicular to its dipole moment, which
is accompanied by conversion of the kinetic energy of the rotational motion of the molecule into thermal energy [1].

The aim of the present work is to calculate the amount of heat released for unit time per unit volume of the
medium by using the equation of motion of a dipole in a variable electric field.

In the calculations we used the Debye molecule in which a molecule was considered as a sphere possessing
the dipole moment of an actual molecule, while the molecules surrounding it were assumed to be a viscous continuum
described by the equations of hydrodynamics [1].

The calculations were carried out for a field with a circular frequency of ω = 1.54⋅1010 rad ⁄ sec. At such a fre-
quency the electronic and vibrational states of molecules are virtually not excited [2].

A polar molecule in an electric field is subjected to the action of a moment of force k = −∂u ⁄ ∂ϑ , where u is the

scalar product of the electric-field intensity E by a dipole moment d, taken with an inverse sign, i.e., u = −∑ 

i

 diEi, and ϑ  is

the angle formed by E and d.

We assume that the field is directed along the polar z-axis; this gives u = −dzEz.
Let us consider the simplest case where Ez = E0 cos ωt.
The product of the moment of inertia of the molecule I by the angular acceleration ϑ

..
 is equal to the sum of

the moments of forces acting on the dipole [3].
To the dipole the moment of the force attributable to an electric field i.e., k = −dE sin ϑ , and the moment of

the viscous force proportional to the angular rotational velocity of the molecule ϑ  are applied.
An analytical expression for the moment of the viscous force is known only in the simplest case of a rotating

sphere [1] and is written as 

M = − ξ ϑ
.
 ,

where ξ = 8πηR3; here R is the sphere radius.
With regard for the foregoing, the equation of motion of an electric dipole in the field of an electromagnetic

wave can be represented in the form

Iϑ
..

 = − dE0 cos ωt sin ϑ  − ξ ϑ
.
 . (1)

After multiplying (1) by ϑ
.
 with account for ϑ

.
 ϑ
..

 = 
d
dt

 



ϑ
.

 2

2




 the expression for the time derivative of the ki-

netic energy is written as

d
dt

 



Iϑ
.  2

2




 = dE0 cos ωt 

d (cos ϑ)
dt

 − ξ ϑ
.  2

 . (2)
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It is known that the time derivative of the kinetic energy is equal to the sum of powers of the forces acting
on a body [3].

The first term on the right-hand side of Eq. (2) determines the work per unit time done by an electric field
on a dipole, while the second term is the work per unit time done by the viscous force on the dipole. The first term
determines the kinetic energy of the molecule and can be both positive and negative, while the second term is always
negative. Precisely the second term is responsible for dissipation of the kinetic energy into the thermal one.

We assume that at a certain instant of time an electric field can be switched off; then Eq. (2) can be repre-
sented as follows

d
dt

 

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
Iϑ
.  2

2




 = − ξ ϑ

.  2
 . (3)

A solution of Eq. (3) is written in the form

ϑ
.  2

 = ϑ
.

0
 2
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 t
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
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t
τ



 , (4)

where τ = I ⁄ 2ξ = I ⁄ (16πηR3) is the time of viscous relaxation for which the kinetic energy of the rotational motion of
a molecule decreases e times.

We will evaluate this time for the molecule of gaseous ammonia. In this case, R C 2⋅10−10 m, M = 2.9⋅10−26  kg,

I = 
2
5

 MR2 C 5⋅10−46 kg⋅m2, and η C 10−5 kg ⁄ (m⋅sec), whence τ C 10−13 sec.

Next, Eq. (1) can be represented as 

ϑ
..

 + ω1ϑ
.
 + ω0

2
 cos ωt sin ϑ = 0 . (5)

Here ω1 = 1 ⁄ 2π and ω0
2 = dE0

 ⁄ I.
To simplify the analysis, it is convenient to write Eq. (5) in dimensionless form. Let us introduce the dimen-

sionless time

t
′
 = 

t
T0

 = 
ω0

2π
t,  then  

dϑ
.

dt
 = 
ω0

2π
 
dϑ
dt
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d
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dt
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d
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2πω
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 .

As a result, Eq. (5) acquires the form

d
2ϑ

dt
2  + 2π 

ω1

ω0

 
dϑ

dt
 + (2π)2 cos 




2π 

ω

ω0

 t



 sin ϑ  = 0 . (6)

Hereafter the prime in the dimensionless time is omitted.
Solution of Eq. (1) depends on two dimensionless parameters, i.e., α = ω1

 ⁄ ω0 and β = ω ⁄ ω0.
In Table 1 the values of α and β are given for the gaseous ammonia at room temperature and normal pres-

sure, for steam at room temperature and a pressure of 2.6⋅103 Pa , and for water at the same temperature at different
values of the field amplitude E0. The values of α change from hundreds to hundreds of thousands, and the values of
β are in the interval between one and ten.

We will evaluate the first and second terms of Eq. (6) with respect to the order of magnitude. Provided the
dimensional time is equal to the period of an electric field T, the dimensionless time is equal to ω0

 ⁄ ω. With regard
for this, the derivative dϑ  ⁄ dt becomes, with respect to the order of magnitude, β = ω0

 ⁄ ω, while the second derivative
becomes β2 = (ω ⁄ ω0)2.

The ratio of the first term of the equation to the second term appears to be β /(2πα) << 1. This indicates that
the nonlinear differential equation of second order degenerates into the equation of first order [4]
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dϑ
dt

 + 
2π
α

 cos (2πβt) sin ϑ  = 0 . (7)

Below we give the results for the specific heat release obtained from an analytical solution of the degenerate
equation of first order (7) and from a numerical solution of the initial equation of second order (6).

An analytical solution of (7) in the implicit form is written as follows:

tan 
ϑ
2

 = tan 
ϑ0

2
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1
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 sin (2πβt)




 , (8)

where ϑ0 is the initial value of a polar angle. To determine the heat released, it is necessary to know ϑ
.

 2. Simple cal-
culations yield the expression
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This expression should be averaged over the initial angles ϑ0 using the distribution sin ϑ0dϑ0 ⁄ 2, 0 ≤ ϑ0 ≤ π. Here, the
symmetry of (9) relative to the polar axis is taken into account. As a result, we arrive at 
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Here

A = exp 

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
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2 sin (2πβt)

αβ




 ,   Q = 

16π2

α2  cos
2
 (2πβt) .

Expression (10) should be averaged over the dimensionless time within the limits from 0 to ω0
 ⁄ ω, which in-

dicates averaging over the dimensional time for the period of an acting electric field.

Taking into account that 




2 sin (2πβt)
αβ




 << 1, we obtain the expansion of expression (10) with an accuracy of

up to x2 = 

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.

Averaging of (11) over the time yields
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In the dimensional form, the dissipative function E
.
η determining the energy dissipated into heat by one dipole

per unit time is written as

E
.
η = I

.
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Finally

E
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1
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As follows from the foregoing, expression (14) is valid provided that

ω0

α
 << ω << πω1 . (15)

In this frequency range of an acting electric field the heat release increases with the frequency.
To obtain the energy loss per unit volume per unit time expression (14) should be multiplied by the number

of molecules per unit volume.
It is known that a differential equation of nth order is equivalent to a system of n differential equations of

first order with two unknowns ϑ and ϑ
.
. For this we assume that

ϑ
.
 = 

dϑ
dt

 ,   
dϑ
.

dt
 = − 2π 

ω1

ω0
 ϑ
.
 − (2π)2 cos 
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 t
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 sin ϑ . (16)

The system of equations (16) was solved numerically by the Euler–Cromer method that had proved itself well
in solving equations describing vibrational phenomena [6]. In our case, the Euler–Cromer algorithm acquires the form

ϑn+1 = ϑn + ϑ
.

n+1∆t ,   ϑ
.
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ϑ
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The system of equations (17) was solved numerically for several values of the initial angle ϑ0, then a dissi-

pative function for the initial angles 



2π 

ω1

ω0
 ϑ
.

 2


 was determined, and next the dissipative function was averaged over

the time and the initial angles with allowance for the symmetry relative to the polar axis using the distribution
sin ϑ0dϑ0 ⁄ 2.

At the values of α and β given in Table 1, a numerical solution of equations (16) is virtually independent of
the initial angular velocity ϑ

.
0 and is determined only by the value of the polar angle ϑ0 at the initial instant of time,

which numerically confirms the degeneracy of the equation of second order (6) into the equation of first order (7).

TABLE 1. Values of the Parameters α = ω1 ⁄ ω0 and β = ω ⁄ ω0

Parameters
E0⋅10–2, V/m

5 10 15 20 25 40 50 70 90 100 300
Ammonia

α 2278 1611 1315 1139 1019 805 720 609 532 509 294

β 7.33 5.19 3.67 3.28 2.59 2.32 1.96 1.73 1.64 0.95 0.78

Steam

α 3305 2337 1908 1652 1478 1169 1045 883 779 739 427

β 6.08 4.30 3.50 3.04 2.72 2.15 1.92 1.60 1.40 1.36 0.78

Water

α 1.6⋅105 1.2⋅105 9.5⋅104 8.3⋅104 7.4⋅104 5.8⋅104 5.2⋅104 4.4⋅104 3.9⋅104 3.7⋅104 2.1⋅104

β 6.1 4.3 3.51 3.04 2.72 2.15 1.92 1.60 1.43 1.36 0.78
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Table 2 gives the time-averaged values of heat release E
.
η as a function of the initial angle ϑ0 and of the am-

plitude of an electric field and the initial angle-averaged values of heat release E
.
ηm for gaseous ammonia, steam, and

water in units of 106 W/m3, obtained on solving numerically the system (16). The same table gives the values of spe-
cific heat release (W/m3) E

.
ηm.anal calculated with the use of the analytical solution of Eq. (7). The values of E

.
ηm and

E
.
ηm.anal virtually coincide.

The calculated results have been experimentally tested for two polar media, i.e., distilled water and gaseous
ammonia. An experiment was carried out under normal conditions (at atmospheric pressure and an ambient temperature
equal to 293 K). The intensity of the electric component of the electromagnetic field was E0 C 7⋅102 V/m, and the fre-
quency ω = 1.54⋅1010 rad/sec. Water and ammonia were placed into a vessel made of radiotransparent material having
low conductivity (polytetrafluoroethylene).

We determined the rate of change in the temperature of the medium in the field of an electromagnetic wave.
In conformity with this, the specific heat release for distilled water was 106 W ⁄ m3, and for ammonia 1.7⋅104 W ⁄ m3.

The values of the heat release in the indicated media calculated by the suggested method at the same parame-
ters of the electromagnetic field amounted to 106 W ⁄ m3 for water and 5⋅104 W ⁄ m3 for gaseous ammonia. As is seen,
the values of the heat release obtained from measurements and those calculated by the suggested method coincide
within the limits of the order of magnitude.

Thus, in the present work a procedure is suggested for calculation of the energy losses of an electromagnetic
field in polar media. The procedure is based on the Debye model describing interaction of polar molecules with an
external variable electric field and a surrounding medium. The calculation is carried out with the use of the prescribed
values of the parameters of the electromagnetic field and the reference parameters of the medium.

NOTATION

ω, circular velocity, rad/sec; d, dipole moment, C⋅m; E0, amplitude of the electric-field intensity, V/m; I, mo-
ment of inertia of the molecule, kg⋅m2; M, moment of the viscous force, N⋅m; η, dynamic viscosity, N⋅sec ⁄ m2.

TABLE 2. Calculated Results of Heat Release E
.
η, E
.
ηm, E

.
ηm⋅anal ( ⋅106, W ⁄ m3)

E0⋅10–2, V/m
E
.
η at ϑ0, deg

E
.
ηm E

.
ηm⋅anal

10 20 50 70 90
Ammonia

5 9⋅10–4 3.6⋅10–3 1.8⋅10–2 2.7⋅10–2 3⋅10–2 0.01 0.01

10 3.7⋅10–3 1.4⋅10–2 7.2⋅10–2 0.1 0.12 0.04 0.04

20 1.5⋅10–2 5.7⋅10–2 0.3 0.43 0.49 0.165 0.224

50 9⋅10–2 0.36 1.8 2.7 3.07 1.024 1.6

90 0.3 1.2 5.8 8.75 9.9 3.305 3.92
Steam

5 2.5⋅10–6 9.8⋅10–6 5⋅10–5 7.4⋅10–5 8.4⋅10–5 2.8⋅10–5 3⋅10–5

10 1⋅10–5 4⋅10–5 2⋅10–4 3⋅10–4 3.36⋅10–4 1.12⋅10–4 1.13⋅10–4

20 4⋅10–5 1.6⋅10–4 8⋅10–4 1.2⋅10–3 1.34⋅10–3 4.45⋅10–4 4.7⋅10–4

50 2.5⋅10–4 9.8⋅10–4 5⋅10–3 7.4⋅10–3 8.4⋅10–3 2.8⋅10–3 2.82⋅10–3

90 8⋅10–4 3⋅10–3 1.6⋅10–2 2.4⋅10–2 2.7⋅10–2 9⋅10–3 9⋅10–3

Water

5 2.4⋅10–2 9⋅10–2 0.46 0.7 0.79 0.265 0.268

10 9.5⋅10–2 0.37 1.8 2.8 3.16 1.05 1

20 0.38 1.47 7.39 11.12 12.59 4.2 4.35
50 2.38 9.23 46.3 69.65 78.87 26.29 26.5
90 7.66 29.73 149 224 254 84.7 85
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